

EUR	AND	IO	
FRAMEWORK	CODING	

STANDARDS	

This document outlines the EUR and IO coding style guideline for .NET
(C#), JavaScript and database programming to be followed when doing
application development. This document will periodically be reviewed

for additional content and revised. Make sure to verify you are
referencing the most recent version.

C#,	JavaScript,	
Database	

Publish Date:
October 18, 2019

Author:
Sailer, Francis C	

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	1	

Contents	

1. ACKNOWLEDGEMENT .. 3

2. OVERVIEW ... 3

3. PRINCIPLES & THEMES ... 3

4. TERMINOLOGY ... 4

5. GENERAL CODING STANDARDS .. 4

5.1. CLARITY AND CONSISTENCY .. 4
5.2. FORMATTING AND STYLE .. 4
5.3. USING LIBRARIES .. 5
5.4. GLOBAL VARIABLES ... 6
5.5. VARIABLE DECLARATIONS AND INITALIZATIONS ... 6
5.6. FUNCTION DECLARATIONS AND CALLS .. 7
5.7. STATEMENTS ... 7
5.8. ENUMS ... 8
5.9. WHITESPACE ... 10
5.10. BRACES .. 12
5.11. COMMENTS .. 12
5.12. FILE NAMING ... 17

6. .NET CODING STANDARDS ... 18

6.1. DESIGN GUIDELINES FOR DEVELOPING CLASS LIBRARIES ... 18
6.2. FILES AND STRUCTURE ... 18
6.3. ASSEMBLY PROPERTIES .. 18
6.4. NAMING CONVENSIONS ... 18
6.5. CONSTANTS ... 22
6.6. STRINGS ... 23
1.1. ARRAYS AND COLLECTIONS ... 24
6.7. STRUCTURES .. 25
6.8. CLASSES ... 26
1.2. NAMESPACES .. 29
6.9. ERRORS AND EXCEPTIONS .. 29
1.3. RESOURCE CLEANUP ... 31
6.10. INTEROP ... ERROR! BOOKMARK NOT DEFINED.

7. JAVASCRIPT CODING STANDARDS .. 38

7.1. FILES AND STRUCTURE ... 38
7.2. NAMING CONVENTIONS .. 39
7.3. STRINGS ... 39
7.4. ARRAYS AND COLLECTIONS ... 40
7.5. CLASSES ... 40
7.6. ERRORS AND EXCEPTIONS .. 40

8. SQL SERVER DATABASE CODING STANDARDS .. 41

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	2	

8.1. GENERAL .. 41
8.2. NAMING ... 41
8.3. STRUCTURE ... 42
8.4. FORMATTING ... 42
8.5. CODING .. 43

9. APPENDIX .. 45

9.1. REFERENCES .. 45

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	3	

1. Acknowledgement	

This document borrows heavily from a number of documents that are referenced in the appendix of this
document.

2. Overview	

This document defines the native .NET, JavaScript and database coding standard for the Application
Developer Group (ADG) project team. This standard derives from the experience of previous and
ongoing product development efforts and therefore is continuously evolving. If you discover a new best
practice or a topic that is not covered, please bring that to the attention of the Application Development
Group (EUR-IO Application Development Corps) for inclusion in this document.

While no set of guidelines will satisfy everyone, the goal of a standard is to create efficiencies across a
community of developers. Applying a set of well-defined coding standards will result in code with fewer
bugs, and better maintainability.

3. Principles	&	Themes	

High-quality samples exhibit the following characteristics because customers use them as examples of
best practices:

1. Understandable. Samples must be clearly readable and straightforward. They must showcase
the key things they’re designed to demonstrate. The relevant parts of a sample should be easy
to reuse. Samples should not contain unnecessary code. They must include appropriate
documentation.

2. Correct. Samples must demonstrate properly how to perform the key things they are designed
to teach. They must compile cleanly, run correctly as documented, and be tested.

3. Consistent. Samples should follow consistent coding style and layout to make the code easier to
read. Likewise, samples should be consistent with each other to make them easier to use
together. Consistency shows craftsmanship and attention to detail.

4. Modern. Samples should demonstrate current practices such as use of Unicode, error handling,
defensive programming, and portability. They should use current recommendations for runtime
library and API functions. They should use recommended project & build settings.

5. Safe. Samples must comply with legal, privacy, and policy standards. They must not
demonstrate hacks or poor programming practices. They must not permanently alter machine
state. All installation and execution steps must be reversible.

6. Secure. The samples should demonstrate how to use secure programming practices such as
least privilege, secure versions of runtime library functions, and SDL-recommended project
settings.

The proper use of programming practices, design, and language features determines how well samples
can achieve these. This code standard is designed to help you create samples that serve as “best
practices” for others to emulate.

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	4	

4. Terminology	

Through-out this document there will be recommendations or suggestions for standards and practices.
Some practices are very important and must be followed, others are guidelines that are beneficial in
certain scenarios but are not applicable everywhere. In order to clearly state the intent of the standards
and practices that are discussed we will use the following terminology.

Wording Intent Justification

☑ Do... This standard or practice should be followed in all
cases. If you think that your specific application is
exempt, it probably isn't. These standards are present to

mitigate bugs.
☒ Do Not... This standard or practice should never be applied.

☑ You should... This standard or practice should be followed in
most cases. These standards are typically

stylistic and attempt to promote a
consistent and clear style. ☒ You should not... This standard or practice should not be followed,

unless there's reasonable justification.

☑ You can… This standard or practice can be followed if you
want to; it's not necessarily good or bad. There
are probably implications to following the
practice (dependencies, or constraints) that
should be considered before adopting it.

These standards are typically
stylistic, but are not ubiquitously
adopted.

5. General	Coding	Standards	

These general coding standards can be applied to all languages - they provide high-level guidance to the
style, formatting and structure of your source code.

5.1. Clarity	and	Consistency	

☑ Do ensure that clarity, readability and transparency are paramount. These coding standards strive to
ensure that the resultant code is easy to understand and maintain, but nothing beats fundamentally
clear, concise, self-documenting code.

☑ Do ensure that when applying these coding standards that they are applied consistently.

5.2. Formatting	and	Style	

☒ Do not use tabs. It's generally accepted across Microsoft that tabs shouldn't be used in source files -
different text editors use different spacing to render tabs, and this causes formatting confusion. All code
should be written using four spaces for indentation.

Visual Studio text editor can be configured to insert spaces for tabs.

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	5	

☑ You should limit the length of lines of code to 120. Having overly long lines inhibits the readability of
code. Break the code line when the line length is greater than column 120 for readability.
☑ Do use a fixed-width font, typically Courier New, in your code editor.

5.3. Using	Libraries	

☒ Do not reference unnecessary libraries, include unnecessary header files, or reference unnecessary
assemblies. Paying attention to small things like this can improve build times, minimize chances for
mistakes, and give readers a good impression.

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	6	

5.4. Global	Variables	

☑ Do minimize global variables. To use global variables properly, always pass them to functions
through parameter values. Never reference them inside of functions or classes directly because doing
so creates a side effect that alters the state of the global without the caller knowing. The same goes for
static variables. If you need to modify a global variable, you should do so either as an output parameter
or return a copy of the global. Minimize the use of Session and Application objects and instead use
Singleton objects and models.

5.5. Variable	Declarations	and	Initializations	

☑ Do use C# predefined types.

☒ Do not use aliases in the System namespace.

☑ With generics Do use capital letters for types. Reserve suffixing Type when dealing with the .NET
type Type.

☒ Do not use fully qualified type names. Use the using statement instead.

☑ Do declare local variables in the minimum scope block that can contain them, typically just before
use if the language allows; otherwise, at the top of that scope block.

☑ Do initialize variables when they are declared.

☑ Do declare and initialize/assign local variables on a single line where the language allows it. This
reduces vertical space and makes sure that a variable does not exist in an un-initialized state or in a state
that will immediately change.

// C# sample:
string name = myObject.Name;
int val = time.Hours;

// JavaScript sample:
var name = myObject[“name”];

☒ Do not declare multiple variables in a single line. One declaration per line is recommended since it
encourages commenting, and could avoid confusion.

Good:
// C# sample:
string name = myObject.Name;
string val = time.Hours.ToString();

// JavaScript sample:
var name = myObject[“name”];
var val = d.getHours();

Bad:

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	7	

// C# sample:
string name = myObject.Name.ToString(), string val = time.Hours;

// JavaScript sample:
var name = myObject[“name”], val = d.getHours().toString();

5.6. Function	Declarations	and	Calls	

The function/method name, return value and parameter list can take several forms. Ideally this can all
fit on a single line. If there are many arguments that don't fit on a line those can be wrapped, many per
line or one per line. Put the return type on the same line as the function/method name if it will fit. For
example,

Single Line Format:

// C# / JavaScript function call sample:
hr = DoSomeFunctionCall(param1, param2, param3);

Multiple Line Formats:

// C# / JavaScript function declaration sample:
HRESULT DoSomeFunctionCall(int param1, int param2, int *param3,

int param4, int param5);

// C# function call sample:
hr = DoSomeFunctionCall(param1, param2, param3,

param4, param5);

When breaking up the parameter list into multiple lines, each type/parameter pair should line up under
the preceding one, the first one being on a new line, indented one tab. Parameter lists for
function/method calls should be formatted in the same manner.

// C# / JavaScript function call sample:
hr = DoSomeFunctionCall(
 hwnd,
 param1,
 param2,
 param3,
 param4,
 param5);

☑ Do order parameters, grouping the in parameters first, the out parameters last. Within the group,
order the parameters based on what will help programmers supply the right values. For example, if a
function takes arguments named “left” and “right”, put “left” before “right” so that their place match
their names. When designing a series of functions which take the same arguments, use a consistent
order across the functions. For example, if one function takes an input handle as the first parameter, all
of the related functions should also take the same input handle as the first parameter.

☒ Do not include a space between a function name and its parentheses.

5.7. Statements	

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	8	

☒ Do not put more than one statement on a single line because it makes stepping through the code in
a debugger much more difficult.

Good:
// C# / JavaScript sample:
a = 1;
b = 2;

Bad:
// C# / JavaScript sample:
a = 1; b = 2;

☑ Do add a space between control statements and its parenthesis.

5.8. Enums	

☑ Do use an enum to strongly type parameters, properties, and return values that represent sets of
values.

☑ Do favor using an enum over static constants or “#define” values. An enum is a structure with a set
of static constants. The reason to follow this guideline is because you will get some additional compiler
and reflection support if you define an enum versus manually defining a structure with static constants.

Good:
// C# sample:
public enum Color
{
 Red,
 Green,
 Blue
}

Bad:
// C# sample:
public static class Color
{
 public const int Red = 0;
 public const int Green = 1;
 public const int Blue = 2;
}

☒ Do not use an enum for open sets (such as the operating system version, names of your friends,
etc.).

☑ Do provide a value of zero on simple enums. Consider calling the value something like “None.” If
such value is not appropriate for this particular enum, the most common default value for the enum
should be assigned the underlying value of zero.

// C# sample:
public enum Compression
{
 None = 0,
 GZip,

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	9	

 Deflate
}

☒ Do not use Enum.IsDefined for enum range checks in .NET. There are really two problems with
Enum.IsDefined. First it loads reflection and a bunch of cold type metadata, making it a surprisingly
expensive call. Second, there is a versioning issue here.

Good:
// C# sample:
if (c > Color.Black || c < Color.White)
{
 throw new ArgumentOutOfRangeException(...);
}

Bad:
// C# sample:
if (!Enum.IsDefined(typeof(Color), c))
{
 throw new InvalidEnumArgumentException(...);
}

5.8.1. Flag	Enums	

Flag enums are designed to support bitwise operations on the enum values. A common example of the
flags enum is a list of options.

☑ Do apply the System.FlagsAttribute to flag enums in .NET. Do not apply this attribute to simple
enums.

☑ Do use powers of two for the flags enum values so they can be freely combined using the bitwise OR
operation. For example,

// C# sample:
[Flags]
public enum AttributeTargets
{
 Assembly = 0x0001,
 Class = 0x0002,
 Struct = 0x0004,
 ...
}

☑ You should provide special enum values for commonly used combinations of flags. Bitwise
operations are an advanced concept and should not be required for simple tasks. FileAccess.ReadWrite
is an example of such a special value. However, you should not create flag enums where certain
combinations of values are invalid.

// C# sample:
[Flags]
public enum FileAccess
{
 Read = 0x1,
 Write = 0x2,
 ReadWrite = Read | Write

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	10	

}

☒ You should not use flag enum values of zero, unless the value represents “all flags are cleared” and
is named appropriately as “None”. The following C# example shows a common implementation of a
check that programmers use to determine if a flag is set (see the if-statement below). The check works
as expected for all flag enum values except the value of zero, where the Boolean expression always
evaluates to true.

Bad:
[Flags]
public enum SomeFlag
{
 ValueA = 0, // This might be confusing to users
 ValueB = 1,
 ValueC = 2,
 ValueBAndC = ValueB | ValueC,
}
SomeFlag flags = GetValue();
if ((flags & SomeFlag.ValueA) == SomeFlag.ValueA)
{
 ...
}

Good:
[Flags]
public enum BorderStyle
{
 Fixed3D = 0x1,
 FixedSingle = 0x2,
 None = 0x0
}
if (foo.BorderStyle == BorderStyle.None)
{
 ...
}

5.9. Whitespace	

5.9.1. Blank	Lines	

☑ You should use blank lines to separate groups of related statements. Omit extra blank lines that do
not make the code easier to read. For example, you can have a blank line between variable declarations
and code.

Good:
// C++ sample:
void ProcessItem(const Item& item)
{
 int counter = 0;

 if(...)
 {
 }
}

Bad:

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	11	

// C++ sample:
void ProcessItem(const Item& item)
{
 int counter = 0;

 // Implementation starts here
 //
 if(...)
 {
 }

}

In this example of bad usage of blank lines, there are multiple blank lines between the local variable
declarations, and multiple blank likes after the ‘if’ block.

☑ You should use two blank lines to separate method implementations and class declarations.

5.9.2. Spaces	

Spaces improve readability by decreasing code density. Here are some guidelines for the use of space
characters within code:

☑ You should use spaces within a line as follows.

Good:
// C# sample:
CreateFoo(); // No space between function name and parenthesis
Method(myChar, 0, 1); // Single space after a comma
x = array[index]; // No spaces inside brackets
while (x == y) // Single space before flow control statements
if (x == y) // Single space separates operators

// JavaScript sample:
createFoo(); // No space between function name and parenthesis
method(myChar, 0, 1); // Single space after a comma
x = array[index]; // No spaces inside brackets
while (x == y) // Single space before flow control statements
if (x == y) // Single space separates operators

Bad:
// C# sample:
CreateFoo (); // Space between function name and parenthesis
Method(myChar,0,1); // No spaces after commas
CreateFoo(myChar, 0, 1); // Space before first arg, after last arg
x = array[index]; // Spaces inside brackets
while (x == y) // No space before flow control statements
if (x==y) // No space separates operators

// JavaScript sample:
createFoo (); // Space between function name and parenthesis
method(myChar,0,1); // No spaces after commas
createFoo(myChar, 0, 1); // Space before first arg, after last arg
x = array[index]; // Spaces inside brackets
while(x == y) // No space before flow control statements
if (x==y) // No space separates operators

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	12	

5.10. Braces	

☑ Do put starting braces on their own line, except in JavaScript. Additionally, always use braces in all
frameworks.

Good:
// C# sample:
if (x > 5)
{
 y = 0;
}

Bad:
// C# sample:
if (x > 5)
 y = 0;

☑ You should use braces around single line conditionals. Doing this makes it easier to add code to
these conditionals in the future and avoids ambiguities should the tabbing of the file become disturbed.

Good:
// C# / JavaScript sample:
if (x > 5)
{
 y = 0;
}

Bad:
// C# / JavaScript sample:
if (x > 5) y = 0;

5.11. Comments	

☑ You should describe code that is not obvious at first glance.

☒You should not over comment your code. If your comments meet or exceed your code size, you are
over commenting. Comments should be short and to the point.

☑ You should use comments that summarize what a piece of code is designed to do and why.

☒Do not use comments to repeat the code. Also all old code should be removed rather than being
commented out.

Good:
// Determine whether system is running Windows Vista or later operating
// systems (major version >= 6) because they support linked tokens, but
// previous versions (major version < 6) do not.

Bad:
// The following code sets the variable i to the starting value of the
// array. Then it loops through each item in the array.

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	13	

☑You should use ‘//’ comments instead of ‘/* */’ for comments for C# and JavaScript code comments.
The single-line syntax (// …) is preferred even when a comment spans multiple lines.

// Determine whether system is running Windows Vista or later operating
// systems (major version >= 6) because they support linked tokens, but
// previous versions (major version < 6) do not.
if (Environment.OSVersion.Version.Major >= 6)
{
}

☑ You should indent comments at the same level as the code they describe.

☑ You should use full sentences with initial caps, a terminating period and proper punctuation and
spelling in comments.

Good:
// Initialize the components on the Windows Form.
InitializeComponent();

Bad:
//Initialize the components on the Windows Form.
InitializeComponent();

5.11.1.1. Inline	Code	Comments	

Inline comments should be included on their own line and should be indented at the same level as the
code they are commenting on, with a blank line before, but none after. Comments describing a block of
code should appear on a line by themselves, indented as the code they describe, with one blank line
before it and one blank line after it. For example:

if (MAXVAL >= exampleLength)
{
 // Report the error.
 ReportError(GetLastError());

 // The value is out of range, we cannot continue.
 return E_INVALIDARG;
}

Inline comments are permissible on the same line as the actual code only when giving a brief description
of a structure member, class member variable, parameter, or a short statement. In this case it is a good
idea to align the comments for all variables. For example:

class Example
{
public:
 ...

 void TestFunction

{
 ...

 do
 {
 ...

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	14	

 }
 while (!fFinished); // Continue if not finished.
 }

private:
 int m_length; // The length of the example
 float m_accuracy; // The accuracy of the example
};

☒ You should not drown your code in comments. Commenting every line with obvious descriptions of
what the code does actually hinders readability and comprehension. Single-line comments should be
used when the code is doing something that might not be immediately obvious.

The following example contains many unnecessary comments:

Bad:
// Loop through each item in the wrinkles array
for (int i = 0; i <= nLastWrinkle; i++)
{
 Wrinkle *pWrinkle = apWrinkles[i]; // Get the next wrinkle
 if (pWrinkle->IsNew() && // Process if it’s a new wrinkle
 nMaxImpact < pWrinkle->GetImpact()) // And it has the biggest impact
 {
 nMaxImpact = pWrinkle->GetImpact(); // Save its impact for comparison
 pBestWrinkle = pWrinkle; // Remember this wrinkle as well
 }
}

A better implementation would be:

Good:
// Loop through each item in the wrinkles array, find the Wrinkle with
// the largest impact that is new, and store it in ‘pBestWrinkle’.
for (int i = 0; i <= nLastWrinkle; i++)
{
 Wrinkle *pWrinkle = apWrinkles[i];
 if (pWrinkle->IsNew() && nMaxImpact < pWrinkle->GetImpact())
 {
 nMaxImpact = pWrinkle->GetImpact();
 pBestWrinkle = pWrinkle;
 }
}

☑ You should add comments to call out non-intuitive or behavior that is not obvious from reading the
code.

5.11.1.2. File	Header	Comments	

☑ Do have a file header comment at the start of every human-created code file. The header comment
templates are as follows:

C# file header comment template:

/****************************** Module Header ******************************\
Module Name: <File Name>
Project: <Sample Name>

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	15	

Copyright (c) Microsoft Corporation.

<Description of the file>

This source is subject to the Microsoft Public License.
See http://www.microsoft.com/opensource/licenses.mspx#Ms-PL.
All other rights reserved.

THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.
***/

JavaScript file header comment template:

/*!
* jQuery JavaScript Library v2.1.4
* http://jquery.com/
*
* Includes Sizzle.js
* http://sizzlejs.com/
*
* Copyright 2005, 2014 jQuery Foundation, Inc. and other contributors
* Released under the MIT license
* http://jquery.org/license
*
* Date: 2015-04-28T16:01Z
*/

5.11.1.3. Class	Comments	

☑ You should provide banner comments for all classes and structures that are non-trivial. The level of
commenting should be appropriate based on the audience of the code.

Use XML Documentation comments in C# classes. When you compile .NET projects with /doc the
compiler will search for all XML tags in the source code and create an XML documentation file.

C# class comment template:

/// <summary>
/// The CodeExample class represents an example of code, and tracks
/// the length and complexity of the example.
/// </summary>
public class CodeExample
{
 ...
}

5.11.1.4. Function	Comments	

☑ You should provide banner comments for all public and non-public functions that are not trivial. The
level of commenting should be appropriate based on the audience of the code.

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	16	

C# and JS use descriptive XML Documentation comments. At least a <summary> element and also a
<parameters> element and <returns> element, where applicable, are required. Methods that throw
exceptions should make use of the <exception> element to indicate what exceptions may be thrown.

C# function comment template:

/// <summary>
/// <Function description>
/// </summary>
/// <param name="Parameter name">
/// <Parameter description>
/// </param>
/// <returns>
/// <Description of function return value>
/// </returns>
/// <exception cref="<Exception type>">
/// <Exception that may be thrown by the function>
/// </exception>

Javascript XML comment:

function getArea(radius)
{
 /// <summary>Determines the area of a circle that has the specified radius
parameter.</summary>
 /// <param name="radius" type="Number">The radius of the circle.</param>
 /// <returns type="Number">The area.</returns>
 var areaVal;
 areaVal = Math.PI * radius * radius;
 return areaVal;
}

Any method or function which can fail with side-effects should have those side-effects clearly
communicated in the function comment. As a general rule, code should be written so that it has no side-
effects in error or failure cases; the presence of such side-effects should have some clear justification
when the code is written. (Such justification is not necessary for routines which zero-out or otherwise
overwrite some output-only parameter.)

5.11.1.5. Commenting	Out	Code	

Commenting out code is necessary when you demonstrate multiple ways of doing something. The ways
except the first one are commented out. Use [-or-] to separate the multiple ways. For example,

// C# / JavaScript sample:
// Demo the first solution.
DemoSolution1();

// [-or-]

// Demo the second solution.
//DemoSolution2();

5.11.2. TODO	Comments	

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	17	

☒ Do not use TODO comments in any released samples. Every sample must be complete and not
require a list of unfinished tasks sprinkled throughout the code.

5.11.3. Regions	

☑ Do use region declarations where there is a large amount of code that would benefit from this
organization. Grouping the large amount of code by scope or functionality improves readability and
structure of the code.

C# regions:

#region Helper Functions for XX
...
#endregion

5.12. File	Naming	

See Files and Structure sections in this document associated to a specific technology.

 	

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	18	

6. .NET	Coding	Standards	

These coding standards can be applied to C#.

6.1. Design	Guidelines	for	Developing	Class	Libraries	

The Design Guidelines for Developing Class Libraries document on MSDN is a fairly thorough discussion
of how to write managed code. The information in this section highlights some important standards and
lists the EUR-IO Code Framework code samples’ exceptions to the guidelines. Therefore, you should
read the two documents side by side.

6.2. Files	and	Structure	

☒ Do not have more than one public type in a source file, unless they differ only in the number of
generic parameters or one is nested in the other. Multiple internal types in one file are allowed.

☑ Do name the source file with the name of the public type it contains. For example, MainForm class
should be in MainForm.cs file and List<T> class should be in List.cs file.

6.3. Assembly	Properties	

The assembly should contain the appropriate property values describing its name, copyright, and so on.

Standard Example

Set Copyright to Copyright © Department of
State 2019

[assembly: AssemblyCopyright("Copyright © Department
of State 2019")]

Set AssemblyCompany to Department of State [assembly: AssemblyCompany("Department of State")]

Set both AssemblyTitle and AssemblyProduct
to the current sample name

[assembly: AssemblyTitle("CSNamedPipeClient")]
[assembly: AssemblyProduct("CSNamedPipeClient")]

6.4. Naming	Conventions	

6.4.1. General	Naming	Conventions	

☑ Do use meaningful names for various types, functions, variables, constructs and types.

☒ You should not use shortenings or contractions as parts of identifier names. For example, use
“GetWindow” rather than “GetWin”. For functions of common types, thread procs, window procedures,
dialog procedures use the common suffixes for these “ThreadProc”, “DialogProc”, “WndProc”.

☒ Do not use underscores, hyphens, or any other non-alphanumeric characters.

6.4.2. Capitalization	Naming	Rules	for	Identifiers	

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	19	

The following table describes the capitalization and naming rules for different types of identifiers.

Identifier Casing Naming Structure Example

Class,
Structure

PascalCasing Noun public class ComplexNumber
{...}
public struct ComplextStruct
{...}

Namespace PascalCasing Noun
☒ Do not use the same name for a
namespace and a type in that
namespace.

namespace
Microsoft.Sample.Windows7

Enumeration PascalCasing Noun
☑ Do name flag enums with plural
nouns or noun phrases and simple
enums with singular nouns or noun
phrases.

[Flags]
public enum ConsoleModifiers
{ Alt, Control }

Method PascalCasing Verb or Verb object pair

☑ Methods with return values Should
have a name describing the value
returned.

public void Print() {...}
public void ProcessItem()
{...}

public string
GetObjectState(){...}

Public
Property

PascalCasing Noun or Adjective
☑ Do name collection proprieties
with a plural phrase describing the
items in the collection, as opposed to a
singular phrase followed by “List” or
“Collection”.
☑ Do name Boolean proprieties with
an affirmative phrase (CanSeek instead
of CantSeek). Optionally, you can also
prefix Boolean properties with “Is,”
“Can,” or “Has” but only where it adds
value.

public string CustomerName
public ItemCollection Items
public bool CanRead

Non-public
Field

camelCasing
or
_camelCasing

Noun or Adjective.
☑ Do be consistent in a code sample
when you use the '_' prefix.

private string name;
private string _name;

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	20	

Event PascalCasing Verb or Verb phrase
☑ Do give events names with a
concept of before and after, using the
present and past tense.
☒ Do not use “Before” or “After”
prefixes or postfixes to indicate pre and
post events.

// A close event that is
raised after the window is
closed.
public event WindowClosed

// A close event that is
raised before a window is
closed.
public event WindowClosing

Delegate PascalCasing ☑ Do add the suffix ‘EventHandler’ to
names of delegates that are used in
events.
☑ Do add the suffix ‘Callback’ to
names of delegates other than those
used as event handlers.
☑ Do suffix custom attributes classes
with Attribute.
☑ Do suffix custom exception classes
with Exception.
☒ Do not add the suffix “Delegate” to
a delegate.

public delegate
WindowClosedEventHandler

Interface PascalCasing
‘I’ prefix

Noun public interface IDictionary

Constant PascalCasing
for publicly
visible;
camelCasing
for internally
visible;
All capital
only for
abbreviation
of one or two
chars long.

Noun public const string
MessageText = "A";
private const string
messageText = "B";
public const double PI =
3.14159...;

Parameter,
Variable

camelCasing Noun int customerID;

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	21	

Generic Type
Parameter

PascalCasing
‘T’ prefix

Noun
☑ Do name generic type parameters
with descriptive names, unless a single-
letter name is completely self-
explanatory and a descriptive name
would not add value.
☑ Do prefix descriptive type
parameter names with T.
☑ You should use T as the type
parameter name for types with one
single-letter type parameter.

T, TItem, TPolicy

Resource PascalCasing Noun
☑ Do provide descriptive rather than
short identifiers. Keep them concise
where possible, but do not sacrifice
readability for space.
☑ Do use only alphanumeric
characters and underscores in naming
resources.

ArgumentExceptionInvalidName

6.4.3. Hungarian	Notation	

☒ Do not use Hungarian notation (i.e., do not encode the type of a variable in its name) in .NET.

6.4.4. UI	Control	Naming	Conventions	

UI controls would use the following prefixes when applicable. The primary purpose was to make code
more readable.

Control Type Prefix

Button btn

CheckBox chk

CheckedListBox lst

ComboBox cmb

ContextMenu mnu

DataGrid dg

DateTimePicker dtp

Form suffix: XXXForm

GroupBox grp

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	22	

ImageList iml

Label lbl

ListBox lst

ListView lvw

Menu mnu

MenuItem mnu

NotificationIcon nfy

Panel pnl

PictureBox pct

ProgressBar prg

RadioButton rb

Splitter spl

StatusBar sts

TabControl tab

TabPage tab

TextBox tb

TreeView tvw

For example, for the “File | Save” menu option, the “Save” MenuItem would be called “mnuFileSave”.

6.5. Constants	

☑ Do use constant fields for constants that will never change. The compiler burns the values of const
fields directly into calling code. Therefore const values can never be changed without the risk of
breaking compatibility.

public class Int32
{
 public const int MaxValue = 0x7fffffff;
 public const int MinValue = unchecked((int)0x80000000);
}

☑ Do use public static (shared) readonly fields for predefined object instances. If there are predefined
instances of the type, declare them as public readonly static fields of the type itself. For example,

public class ShellFolder
{
 public static readonly ShellFolder ProgramData = new
ShellFolder("ProgramData");

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	23	

 public static readonly ShellFolder ProgramFiles = new
ShellFolder("ProgramData");
 ...
}

6.6. Strings	

☒ Do not use the ‘+’ operator to concatenate many strings. Instead, you should use StringBuilder for
concatenation. However, do use the ‘+’ operator to concatenate small numbers of strings.

Good:
StringBuilder sb = new StringBuilder();
for (int i = 0; i < 10; i++)
{
 sb.Append(i.ToString());
}

Bad:
string str = string.Empty;
for (int i = 0; i < 10; i++)
{
 str += i.ToString();
}

☑ Do use overloads that explicitly specify the string comparison rules for string operations. Typically,
this involves calling a method overload that has a parameter of type StringComparison.

☑ Do use StringComparison.Ordinal or StringComparison.OrdinalIgnoreCase for comparisons as your
safe default for culture-agnostic string matching, and for better performance.

☑ Do use string operations that are based on StringComparison.CurrentCulture when you display
output to the user.

☑ Do use the non-linguistic StringComparison.Ordinal or StringComparison.OrdinalIgnoreCase values
instead of string operations based on CultureInfo.InvariantCulture when the comparison is linguistically
irrelevant (symbolic, for example). Do not use string operations based on
StringComparison.InvariantCulture in most cases. One of the few exceptions is when you are persisting
linguistically meaningful but culturally agnostic data.

☑ Do use an overload of the String.Equals method to test whether two strings are equal. For example,
to test if two strings are equal ignoring the case,

if (str1.Equals(str2, StringComparison.OrdinalIgnoreCase))

☒ Do not use an overload of the String.Compare or CompareTo method and test for a return value of
zero to determine whether two strings are equal. They are used to sort strings, not to check for equality.

☑ Do use the String.ToUpperInvariant method instead of the String.ToLowerInvariant method when
you normalize strings for comparison.

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	24	

6.1.1 Arrays	and	Collections	

☑ You should use arrays in low-level functions to minimize memory consumption and maximize
performance. In public interfaces, do prefer collections over arrays.

Collections provide more control over contents, can evolve over time, and are more usable. In addition,
using arrays for read-only scenarios is discouraged as the cost of cloning the array is prohibitive.

However, if you are targeting more skilled developers and usability is less of a concern, it might be
better to use arrays for read-write scenarios. Arrays have a smaller memory footprint, which helps
reduce the working set, and access to elements in an array is faster as it is optimized by the runtime.

☒ Do not use read-only array fields. The field itself is read-only and can’t be changed, but elements in
the array can be changed. This example demonstrates the pitfalls of using read-only array fields:

Bad:
public static readonly char[] InvalidPathChars = { '\"', '<', '>', '|'};

This allows callers to change the values in the array as follows:

InvalidPathChars[0] = 'A';

Instead, you can use either a read-only collection (only if the items are immutable) or clone the array
before returning it. However, the cost of cloning the array may be prohibitive.

public static ReadOnlyCollection<char> GetInvalidPathChars()
{
 return Array.AsReadOnly(badChars);
}

public static char[] GetInvalidPathChars()
{
 return (char[])badChars.Clone();
}

☑ You should use jagged arrays instead of multidimensional arrays. A jagged array is an array with
elements that are also arrays. The arrays that make up the elements can be of different sizes, leading to
less wasted space for some sets of data (e.g., sparse matrix), as compared to multidimensional arrays.
Furthermore, the CLR optimizes index operations on jagged arrays, so they might exhibit better runtime
performance in some scenarios.

// Jagged arrays
int[][] jaggedArray =
{
 new int[] {1, 2, 3, 4},
 new int[] {5, 6, 7},
 new int[] {8},
 new int[] {9}
};

// Multidimensional arrays

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	25	

int [,] multiDimArray =
{
 {1, 2, 3, 4},
 {5, 6, 7, 0},
 {8, 0, 0, 0},
 {9, 0, 0, 0}
};

☑ Do use Collection<T> or a subclass of Collection<T> for properties or return values representing
read/write collections, and use ReadOnlyCollection<T> or a subclass of ReadOnlyCollection<T> for
properties or return values representing read-only collections.

☑ You should reconsider the use of ArrayList because any objects added into the ArrayList are added
as System.Object and when retrieving values back from the arraylist, these objects are to be unboxed to
return the actual value type. So it is recommended to use the custom typed collections instead of
ArrayList. For example, .NET provides a strongly typed collection class for String in
System.Collection.Specialized, namely StringCollection.

☑ You should reconsider the use of Hashtable. Instead, try other dictionary types such as
StringDictionary, NameValueCollection, and HybridCollection. Hashtables can be used if lesser number
of values is stored.

☑ When you are creating a collection type, you should implement IEnumerable so that the collection
can be used with LINQ to Objects.

☒ Do not implement both IEnumerator<T> and IEnumerable<T> on the same type. The same applies
to the nongeneric interfaces IEnumerator and IEnumerable. In other words, a type should be either a
collection or an enumerator, but not both.

☒ Do not return a null reference for Array or Collection. Null can be difficult to understand in this
context. For example, a user might assume that the following code will work. Return an empty array or
collection instead of a null reference.

int[] arr = SomeOtherFunc();
foreach (int v in arr)
{
 ...
}

6.7. Structures	

☑ Do ensure that a state where all instance data is set to zero, false, or null (as appropriate) is valid.
This prevents accidental creation of invalid instances when an array of the structs is created.

☑ Do implement IEquatable<T> on value types. The Object.Equals method on value types causes
boxing and its default implementation is not very efficient, as it uses reflection. IEquatable<T>.Equals
can have much better performance and can be implemented such that it will not cause boxing.

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	26	

6.7.1. Structures	vs.	Classes	

☒ Do not define a struct unless the type has all of the following characteristics:

• It logically represents a single value, similar to primitive types (int, double, etc.).
• It has an instance size fewer than 16 bytes.
• It is immutable.
• It will not have to be boxed frequently.

In all other cases, you should define your types as classes instead of structs.

6.8. Classes	

☑ Do use inheritance to express “is a” relationships such as “cat is an animal”.

☑ Do use interfaces such as IDisposable to express “can do” relationships such as using “objects of this
class can be disposed”.

6.8.1. Fields	

☒ Do not provide instance fields that are public or protected. Public and protected fields do not
version well and are not protected by code access security demands. Instead of using publicly visible
fields, use private fields and expose them through properties.

☑ Do use public static read-only fields for predefined object instances.

☑ Do use constant fields for constants that will never change.

☒ Do not assign instances of mutable types to read-only fields.

6.8.2. Properties	

☑ Do create read-only properties if the caller should not be able to change the value of the property.

☒ Do not provide set-only properties. If the property getter cannot be provided, use a method to
implement the functionality instead. The method name should begin with Set followed by what would
have been the property name.

☑ Do provide sensible default values for all properties, ensuring that the defaults do not result in a
security hole or an extremely inefficient design.

☒ You should not throw exceptions from property getters. Property getters should be simple
operations without any preconditions. If a getter might throw an exception, consider redesigning the
property to be a method. This recommendation does not apply to indexers. Indexers can throw
exceptions because of invalid arguments. It is valid and acceptable to throw exceptions from a property
setter.

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	27	

6.8.3. Constructors	

☑ Do minimal work in the constructor. Constructors should not do much work other than to capture
the constructor parameters and set main properties. The cost of any other processing should be delayed
until required.

☑ Do throw exceptions from instance constructors if appropriate.

☑ Do explicitly declare the public default constructor in classes, if such a constructor is required. Even
though some compilers automatically add a default constructor to your class, adding it explicitly makes
code maintenance easier. It also ensures the default constructor remains defined even if the compiler
stops emitting it because you add a constructor that takes parameters.

☒ Do not call virtual members on an object inside its constructors. Calling a virtual member causes the
most-derived override to be called regardless of whether the constructor for the type that defines the
most-derived override has been called.

6.8.4. Methods	

☑ Do place all out parameters after all the pass-by-value and ref parameters (excluding parameter
arrays), even if this results in an inconsistency in parameter ordering between overloads.

☑ Do validate arguments passed to public, protected, or explicitly implemented members. Throw
System.ArgumentException, or one of its subclasses, if the validation fails: If a null argument is passed
and the member does not support null arguments, throw ArgumentNullException. If the value of an
argument is outside the allowable range of values as defined by the invoked method, throw
ArgumentOutOfRangeException.

6.8.5. Events	&	Exceptions	

☑ Do be prepared for arbitrary code executing in the event-handling method. Consider placing the
code where the event is raised in a try-catch block to prevent program termination due to unhandled
exceptions thrown from the event handlers.

☒ Do not use events in performance sensitive APIs. While events are easier for many developers to
understand and use, they are less desirable than Virtual Members from a performance and memory
consumption perspective.

6.8.6. Member	Overloading	

☑ Do use member overloading rather than defining members with default arguments. Default
arguments are not CLS-compliant and cannot be used from some languages. There is also a versioning
issue in members with default arguments. Imagine version 1 of a method that sets an optional
parameter to 123. When compiling code that calls this method without specifying the optional
parameter, the compiler will embed the default value (123) into the code at the call site. Now, if version

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	28	

2 of the method changes the optional parameter to 863, then, if the calling code is not recompiled, it
will call version 2 of the method passing in 123 (version 1’s default, not version 2’s default).

Good:
 public void Rotate(Matrix data) {
 Rotate(data, 180);
 }

 public void Rotate(Matrix data, int degrees) {
 // Do rotation here
 }
Bad:
 public void Rotate(Matrix data, int degrees, void =, void 180) {
 // Do rotation here
 // Warning!!! Optional parameters not supported
 }

☒ Do not arbitrarily vary parameter names in overloads. If a parameter in one overload represents the
same input as a parameter in another overload, the parameters should have the same name.
Parameters with the same name should appear in the same position in all overloads.

☑ Do make only the longest overload virtual (if extensibility is required). Shorter overloads should
simply call through to a longer overload.

6.8.7. Interface	Members		

☒ You should not implement interface members explicitly without having a strong reason to do so.
Explicitly implemented members can be confusing to developers because they don’t appear in the list of
public members and they can also cause unnecessary boxing of value types.

☑ You should implement interface members explicitly, if the members are intended to be called only
through the interface.

6.8.8. Virtual	Members	

Virtual members perform better than callbacks and events, but do not perform better than non-virtual
methods.

☒ Do not make members virtual unless you have a good reason to do so and you are aware of all the
costs related to designing, testing, and maintaining virtual members.

☑ You should prefer protected accessibility over public accessibility for virtual members. Public
members should provide extensibility (if required) by calling into a protected virtual member.

6.8.9. Static	Classes	

☑ Do use static classes sparingly. Static classes should be used only as supporting classes for the
object-oriented core of the framework.

6.8.10. Abstract	Classes	

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	29	

☒ Do not define public or protected-internal constructors in abstract types.

☑ Do define a protected or an internal constructor on abstract classes.

A protected constructor is more common and simply allows the base class to do its own initialization
when subtypes are created.

public abstract class Claim
{
 protected Claim()
 {
 ...
 }
}

An internal constructor can be used to limit concrete implementations of the abstract class to the
assembly defining the class.

public abstract class Claim
{
 internal Claim()
 {
 ...
 }
}

1.1. Namespaces	

☑ Do use the default namespaces of projects created by Visual Studio in EUR-IO Code Framework code
samples.

6.9. Errors	and	Exceptions	

6.9.1. Exception	Throwing		

☑ Do report execution failures by throwing exceptions. Exceptions are the primary means of reporting
errors in frameworks. If a member cannot successfully do what it is designed to do, it should be
considered an execution failure and an exception should be thrown. Do not return error codes.

☑ Do throw the most specific (the most derived) exception that makes sense. For example, throw
ArgumentNullException and not its base type ArgumentException if a null argument is passed. Throwing
System.Exception as well as catching System.Exception are nearly always the wrong thing to do.

☒ Do not use exceptions for the normal flow of control. Except for system failures and operations with
potential race conditions, you should write code that does not throw exceptions. For example, you can
check preconditions before calling a method that may fail and throw exceptions. For example,

// C# sample:
if (collection != null && !collection.IsReadOnly)
{
 collection.Add(additionalNumber);
}

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	30	

☒ Do not throw exceptions from exception filter blocks. When an exception filter raises an exception,
the exception is caught by the CLR, and the filter returns false. This behavior is indistinguishable from
the filter executing and returning false explicitly and is therefore very difficult to debug.

// C# sample
// This is bad design. The exception filter (When clause)
// may throw an exception when the InnerException property
// returns null
try {
}
catch (ArgumentException e) {
 e.InnerException.Message.StartsWith("File")...End;
 try {
 }
}

☒ Do not explicitly throw exceptions from finally blocks. Implicitly thrown exceptions resulting from
calling methods that throw are acceptable.

6.9.2. Exception	Handling	

☒ You should not swallow errors by catching nonspecific exceptions, such as System.Exception,
System.SystemException, and so on in .NET code. Do catch only specific errors that the code knows how
to handle. You should catch a more specific exception, or re-throw the general exception as the last
statement in the catch block. There are cases when swallowing errors in applications is acceptable, but
such cases are rare.

Good:
// C# sample:
try
{
 ...
}
catch(System.NullReferenceException exc)
{
 ...
}
catch(System.ArgumentOutOfRangeException exc)
{
 ...
}
catch(System.InvalidCastException exc)
{
 ...
}

Bad:
// C# sample:
try
{
 ...
}
catch (Exception ex)
{
 ...
}

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	31	

☑ Do prefer using an empty throw when catching and re-throwing an exception. This is the best way
to preserve the exception call stack.

Good:
// C# sample:
try
{
 ... // Do some reading with the file
}
catch
{
 file.Position = position; // Unwind on failure
 throw; // Rethrow
}

Bad:
// C# sample:
try
{
 ... // Do some reading with the file
}
catch (Exception ex)
{
 file.Position = position; // Unwind on failure
 throw ex; // Rethrow
}

1.2. Resource	Cleanup	

☒ Do not force garbage collections with GC.Collect.

6.9.3. Try-finally	Block	

☑ Do use try-finally blocks for cleanup code and try-catch blocks for error recovery code. Do not use
catch blocks for cleanup code. Usually, the cleanup logic rolls back resource (particularly, native
resource) allocations. For example,

// C# sample:
FileStream stream = null;
try
{
 stream = new FileStream(...);
 ...
}
finally
{
 if (stream != null)
 {
 stream.Close();
 }
}

C# provides the using statement that can be leveraged instead of plain try-finally to clean up objects
implementing the IDisposable interface.

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	32	

// C# sample:
using (FileStream stream = new FileStream(...))
{
 ...
}

Many language constructs emit try-finally blocks automatically for you. Examples are C#’s using
statement, C#’s lock statement, and C#’s foreach statement.

1.1.1. Basic	Dispose	Pattern	

The basic implementation of the pattern involves implementing the System.IDisposable interface and
declaring the Dispose(bool) method that implements all resource cleanup logic to be shared between
the Dispose method and the optional finalizer. Please note that this section does not discuss providing a
finalizer. Finalizable types are extensions to this basic pattern and are discussed in the next section. The
following example shows a simple implementation of the basic pattern:

// C# sample:
public class DisposableResourceHolder : IDisposable
{
 private bool disposed = false;
 private SafeHandle resource; // Handle to a resource

 public DisposableResourceHolder()
 {
 this.resource = ... // Allocates the native resource
 }

 public void DoSomething()
 {
 if (disposed)
 {
 throw new ObjectDisposedException(...);
 }

 // Now call some native methods using the resource
 ...
 }

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 // Protect from being called multiple times.
 if (disposed)
 {
 return;
 }

 if (disposing)
 {
 // Clean up all managed resources.
 if (resource != null)
 {
 resource.Dispose();

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	33	

 }
 }

 disposed = true;
 }
}

☑ Do implement the Basic Dispose Pattern on types containing instances of disposable types.

☑ Do extend the Basic Dispose Pattern to provide a finalizer on types holding resources that need to
be freed explicitly and that do not have finalizers. For example, the pattern should be implemented on
types storing unmanaged memory buffers.

☑ You should implement the Basic Dispose Pattern on classes that themselves don’t hold unmanaged
resources or disposable objects but are likely to have subtypes that do. A great example of this is the
System.IO.Stream class. Although it is an abstract base class that doesn’t hold any resources, most of its
subclasses do and because of this, it implements this pattern.

☑ Do declare a protected virtual void Dispose(bool disposing) method to centralize all logic related to
releasing unmanaged resources. All resource cleanup should occur in this method. The method is called
from both the finalizer and the IDisposable.Dispose method. The parameter will be false if being invoked
from inside a finalizer. It should be used to ensure any code running during finalization is not accessing
other finalizable objects. Details of implementing finalizers are described in the next section.

// C# sample:
protected virtual void Dispose(bool disposing)
{
 // Protect from being called multiple times.
 if (disposed)
 {
 return;
 }

 if (disposing)
 {
 // Clean up all managed resources.
 if (resource != null)
 {
 resource.Dispose();
 }
 }

 disposed = true;
}

☑ Do implement the IDisposable interface by simply calling Dispose(true) followed by
GC.SuppressFinalize(this). The call to SuppressFinalize should only occur if Dispose(true) executes
successfully.

// C# sample:
public void Dispose()
{
 Dispose(true);
 GC.SuppressFinalize(this);
}

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	34	

☒ Do not make the parameterless Dispose method virtual. The Dispose(bool) method is the one that
should be overridden by subclasses.

☒ You should not throw an exception from within Dispose(bool) except under critical situations where
the containing process has been corrupted (leaks, inconsistent shared state, etc.). Users expect that a
call to Dispose would not raise an exception. For example, consider the manual try-finally in this C#
snippet:

TextReader tr = new StreamReader(File.OpenRead("foo.txt"));
try
{
 // Do some stuff
}
finally
{
 tr.Dispose();
 // More stuff
}

If Dispose could raise an exception, further finally block cleanup logic will not execute. To work around
this, the user would need to wrap every call to Dispose (within their finally block!) in a try block, which
leads to very complex cleanup handlers. If executing a Dispose(bool disposing) method, never throw an
exception if disposing is false. Doing so will terminate the process if executing inside a finalizer context.

☑ Do throw an ObjectDisposedException from any member that cannot be used after the object has
been disposed.

// C# sample:
public class DisposableResourceHolder : IDisposable
{
 private bool disposed = false;
 private SafeHandle resource; // Handle to a resource

 public void DoSomething()
 {
 if (disposed)
 {
 throw new ObjectDisposedException(...);
 }

 // Now call some native methods using the resource
 ...
 }

 protected virtual void Dispose(bool disposing)
 {
 if (disposed)
 {
 return;
 }

 // Cleanup
 ...

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	35	

 disposed = true;
 }
}

6.9.4. Finalizable	Types	

Finalizable types are types that extend the Basic Dispose Pattern by overriding the finalizer and
providing finalization code path in the Dispose(bool) method. The following code shows an example of a
finalizable type:

// C# sample:
public class ComplexResourceHolder : IDisposable
{
 bool disposed = false;
 private IntPtr buffer; // Unmanaged memory buffer
 private SafeHandle resource; // Disposable handle to a resource

 public ComplexResourceHolder()
 {
 this.buffer = ... // Allocates memory
 this.resource = ... // Allocates the resource
 }

 public void DoSomething()
 {
 if (disposed)
 {
 throw new ObjectDisposedException(...);
 }

 // Now call some native methods using the resource
 ...
 }

 ~ ComplexResourceHolder()
 {
 Dispose(false);
 }

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 // Protect from being called multiple times.
 if (disposed)
 {
 return;
 }

 if (disposing)
 {
 // Clean up all managed resources.
 if (resource != null)
 {
 resource.Dispose();
 }
 }

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	36	

 // Clean up all native resources.
 ReleaseBuffer(buffer);

 disposed = true;
 }
}

☑ Do make a type finalizable, if the type is responsible for releasing an unmanaged resource that does
not have its own finalizer. When implementing the finalizer, simply call Dispose(false) and place all
resource cleanup logic inside the Dispose(bool disposing) method.

// C# sample:
public class ComplexResourceHolder : IDisposable
{
 ...
 ~ ComplexResourceHolder()
 {
 Dispose(false);
 }

 protected virtual void Dispose(bool disposing)
 {
 ...
 }
}

☑ Do be very careful to make type finalizable. Carefully consider any case in which you think a finalizer
is needed. There is a real cost associated with instances with finalizers, from both a performance and
code complexity standpoint.

☑ Do implement the Basic Dispose Pattern on every finalizable type. See the previous section for
details on the basic pattern. This gives users of the type a means to explicitly perform deterministic
cleanup of those same resources for which the finalizer is responsible.

☑ You should create and use a critical finalizable object (a type with a type hierarchy that contains
CriticalFinalizerObject) for situations in which a finalizer absolutely must execute even in the face of
forced application domain unloads and thread aborts.

☑ Do prefer resource wrappers based on SafeHandle or SafeHandleZeroOrMinusOneIsInvalid (for
Win32 resource handle whose value of either 0 or -1 indicates an invalid handle) to writing finalizer by
yourself to encapsulate unmanaged resources where possible, in which case a finalizer becomes
unnecessary because the wrapper is responsible for its own resource cleanup. Safe handles implement
the IDisposable interface, and inherit from CriticalFinalizerObject so the finalizer logic will absolutely
execute even in the face of forced application domain unloads and thread aborts.

/// <summary>
/// Represents a wrapper class for a pipe handle.
/// </summary>
[SecurityCritical(SecurityCriticalScope.Everything),
HostProtection(SecurityAction.LinkDemand, MayLeakOnAbort = true),
SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode = true)]
internal sealed class SafePipeHandle : SafeHandleZeroOrMinusOneIsInvalid

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	37	

{
 private SafePipeHandle()
 : base(true)
 {
 }

 public SafePipeHandle(IntPtr preexistingHandle, bool ownsHandle)
 : base(ownsHandle)
 {
 base.SetHandle(preexistingHandle);
 }

 [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success),
 DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)]
 [return: MarshalAs(UnmanagedType.Bool)]
 private static extern bool CloseHandle(IntPtr handle);

 protected override bool ReleaseHandle()
 {
 return CloseHandle(base.handle);
 }
}

/// <summary>
/// Represents a wrapper class for a local memory pointer.
/// </summary>
[SuppressUnmanagedCodeSecurity,
HostProtection(SecurityAction.LinkDemand, MayLeakOnAbort = true)]
internal sealed class SafeLocalMemHandle : SafeHandleZeroOrMinusOneIsInvalid
{
 public SafeLocalMemHandle()
 : base(true)
 {
 }

 public SafeLocalMemHandle(IntPtr preexistingHandle, bool ownsHandle)
 : base(ownsHandle)
 {
 base.SetHandle(preexistingHandle);
 }

 [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success),
 DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)]
 private static extern IntPtr LocalFree(IntPtr hMem);

 protected override bool ReleaseHandle()
 {
 return (LocalFree(base.handle) == IntPtr.Zero);
 }
}

☒ Do not access any finalizable objects in the finalizer code path, as there is significant risk that they
will have already been finalized. For example, a finalizable object A that has a reference to another
finalizable object B cannot reliably use B in A’s finalizer, or vice versa. Finalizers are called in a random
order (short of a weak ordering guarantee for critical finalization).

It is OK to touch unboxed value type fields.

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	38	

Also, be aware that objects stored in static variables will get collected at certain points during an
application domain unload or while exiting the process. Accessing a static variable that refers to a
finalizable object (or calling a static method that might use values stored in static variables) might not be
safe if Environment.HasShutdownStarted returns true.

6.9.5	Overriding	Dispose	

If you're inheriting from a base class that implements IDisposable, you must implement IDisposable also.
Always call your base class's Dispose(bool) so it cleans up.

public class DisposableBase : IDisposable
{
 ~ DisposableBase()
 {
 Dispose(false);
 }

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 // ...
 }
}

public class DisposableSubclass : DisposableBase
{
 protected override void Dispose(bool disposing)
 {
 try
 {
 if (disposing)
 {
 // Clean up managed resources.
 }

 // Clean up native resources.
 }
 finally
 {
 base.Dispose(disposing);
 }
 }
}

	

7. JavaScript	Coding	Standards	

These coding standards apply to general JavaScript code. There may be variations acceptable when
using JavaScript frameworks such as JQuery.

7.1. Files	and	Structure	

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	39	

☑ Do link to external JavaScript files using <script> tags.

☒ Do not include JavaScript directly in an HTML file.

7.2. Naming	Conventions	

7.2.1. General	Naming	Conventions	

☑ Do use meaningful names for various types, functions, variables, constructs and types.

☒ You should not use shortenings or contractions as parts of identifier names. For example, use
“GetWindow” rather than “GetWin”. For functions of common types, thread procs, window procedures,
dialog procedures use the common suffixes for these “ThreadProc”, “DialogProc”, “WndProc”.

☒ Do not use underscores, hyphens, or any other non-alphanumeric characters.

7.2.2. Capitalization	Naming	Rules	for	Identifiers	

The following table describes the capitalization and naming rules for different types of identifiers.

Identifier Casing Naming Structure Example

Variables camelCasing Noun or Adjective

var customerID;

Constant
Variables

CAPS_WITH_
UNDERLINES

Noun or Adjective

var CUSTOMER_ID;

File Names Lowercase-
with-dashes

Noun, Adjective or Verb combined as
necessary to describe the feature or
features.

cache-logger.js

Functions /
Methods

camelCasing Verb or Verb object pair

☑ Methods with return values Should
have a name describing the value
returned.

function print() {...}
function processItem() {...}

function
getObjectState(){...}

7.3. Strings	

☑ Do use single quotes instead of doubles. This is especially useful for strings that include HTML.

// sample:
var message = ‘<div class=“className“>Hello World!</div>‘

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	40	

7.4. Arrays	and	Collections	

☑ Do use object literals instead of constructors. Constructors are prone to errors from their
arguments, and are generally slower than literals.

Good:
var array = [];
var hash = {};

Bad:
var array = new Array();
var hash = new Hash();

7.5. Classes	

7.5.1. Naming	

☒ You should not use numbers in a class name unless absolutely unavoidable.

☑ Do add an underscore before any private method’s or property’s name.

7.5.2. Properties	

☑ Do provide sensible default values for properties that will not result in a security hole or inefficiency.

7.5.3. Methods	

☑ Do start the method name with a verb that describes its behavior.

☑ Do validate data types of passed arguments.

☑ Do include ‘has’ or ‘is’ or ‘can’ in the name if it returns a Boolean value.

7.6. Errors	and	Exceptions	

☑ Do report execution failures by throwing exceptions.

☒ Do not return error codes.

☑ Do throw the most specific exception that makes sense.

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	41	

8. SQL	Server	Database	Coding	Standards	

8.1. General	

☒ You should not use triggers when application logic will complete the same result. Triggers tend to
hide functionality and are hard to debug.

8.2. Naming	

☒ Do not use spaces in the name of database objects.

☒ Do not use SQL keywords as the name of database objects. If this is unavoidable, surround the
object name with brackets such as [Year].

☒ Do not prefix stored procedures with ‘sp_’.

☑ Do prefix table names with the owner name.

The following table describes the capitalization and naming rules for different types of database
identifiers.

Identifier Casing Naming Structure Example

Tables PascalCasing

Noun (plural)
☑Do end table names with an ‘s’

Products
Customers

Stored
Procedures

camelCasing sp<App Name>_[<Group
Name>]<Action><table or logical instance>

spOrders_GetNewOrders
spProducts_UpdateProduct

Triggers Modified
PascalCasing

TR_<TableName>_<Action> TR_Orders_UpdateProducts

Indexes Modified
PascalCasing

IX_<TableName>_<Columns separated by _> IX_Products_ProductID

Primary Keys Modified
PascalCasing

PK_<TableName> PK_Products

Foreign Keys Modified
PascalCasing

FK_<TableName1>_<TableName2> FK_Products_Orders

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	42	

Defaults Modified
PascalCasing

DF_<TableName1>_<ColumnName> DF_Products_Quantity

Columns

PascalCasing ☑Do precede the column name with
<TableName> if a column references
another table’s column.

ID

For another table’s column
CustomerID

Keywords UpperCasing SELECT
INSERT
UPDATE
WHERE
AND
OR
LIKE

8.3. Structure	

☑ Do add a primary key to each table.

☑ Do normalize data to third normal form if reasonable and prudent. Do not compromise on
performance to reach third normal form. Sometimes, a little de-normalization results in better
performance.

☒ Do not use TEXT as a data type; use the maximum allowed characters of VARCHAR instead.

☒ Do not default VARCHAR columns to NULL. Default to an empty string instead.

☒ Do not allow NULLs in columns with default values.

☑ Do create stored procedures on the same database as the main tables they will be accessing.

8.4. Formatting	

☑ Do use upper case for all SQL keywords.

☑ Do indent code to improve readability.

☑ Do use single quote characters to delimit strings. Nest single quotes to express a single quote within
a string such as,

 SET @sExample = ‘SQL’’s Authority’

☑ Do use parentheses to increase readability.

☑ Do use BEGIN…END blocks only when multiple statements are present within a conditional code
segment.

☑ Do use one blank line to separate code sections.

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	43	

☑ Do use spaces so that expressions read like sentences.

☑ Do format JOIN operations using indents. Use ANSI Joins instead of old style joins.

☑ Do place SET statements before any executing code in the procedure.

8.5. Coding	

☑ Do optimize queries using the tools provided by SQL Server.

☒ Do not use SELECT *.

☑ Do return multiple result sets from one stored procedure to avoid trips from the application server
to SQL Server.

☒ You should not use temporary tables. Use derived tables or common table expressions (CTE)
wherever possible as they perform better.

☒ You should not <> as a comparison operator. Use IN(…) instead.

 Good

 ID IN(1,3,4,5)

 Bad

 ID <> 2

☑ Do use SET NOCOUNT ON at the beginning of a stored procedure.

☒ Do not use cursors or application loops to do inserts. Use INSERT INTO instead.

☑ Do fully qualify all stored procedure and table references in stored procedures.

☒ Do not define default values for parameters. The front end should supply the value.

☒ Do not use the RECOMPILE option for stored procedures.

☒ Do not use column numbers in the ORDER BY clause.

☒ Do not use GOTO.

☑ Do check the global variable @@ERROR immediately after executing a data manipulation statement
such as INSERT/UPDATE/DELETE so that you can roll-back the transaction if an error occurs.

☑ Do basic validations in the front-end during data entry.

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	44	

☑ Do off-load tasks, like string manipulations, concatenations or row numbering to the front-end
application if these operations are going to consume more CPU cycles on the database server.

☑ Do use a column list in an INSERT statement. This will help avoid problems when the table structure
changes.

☑ Do minimize the use of NULLs, as they often confuse front-end applications, unless the applications
are coded intelligently to eliminate NULLs or convert the NULLs into some other form. Make sure any
expression that deals with NULL results in a NULL output. The ISNULL and COALESCE functions are
helpful in dealing with NULL values.

☒ Do not use the identitycol or rowguidcol.

☒ You should not use cross joins, if possible.

☑ Do use the primary key in the WHERE condition when executing an UPDATE or DELETE statement, if
possible. This reduces error possibilities.

☒ You should not use TEXT or NTEXT datatypes for storing large textual data. Use the maximum
allowed characters of VARCHAR instead.

☒ You should not use dynamic SQL statements.

☑ Do access tables in the same order in your stored procedures and triggers consistently. Remember
to avoid the use of Triggers.

☒ Do not call functions repeatedly within your stored procedures, triggers, functions and batches.

☑ Do define default constraints at the column level.

☒ You should not use wild-card characters at the beginning of a word while searching using the LIKE
keyword, as these results in an index scan, which defeats the purpose of an index.

☑ Do define all constraints, other than defaults, at the table level.

☒ Do not return a result set when a result set is not needed.

☑ Do avoid rules, database level defaults that must be bound or user-defined data types. While these
are legitimate database constructs, opt for constraints and column defaults to hold the database
consistent for development and conversion coding.

☑ Do define constraints that apply to more than one column at the table level.

☑ Do use the CHAR data type for a column only when the column is non-nullable.

☒ Do not use white space in identifiers.

EUR and IO Framework coding standards
C#, JavaScript, Database

v1.0

Application	Development	Group	 Page	45	

☒ You should not use the RETURN statement to return data. It is meant for returning the execution
status only.

9. Appendix	

9.1. References	

All-In-One Code Framework Coding Standards guide for the .NET coding standards, Dan Ruder, Jialiang
Ge, Microsoft, 2011.

C# Coding Standard, Juval Lowy, iDesign, 2011.

Google Javascript Coding Standards, Google, 2014.

SQL Server Coding Standards and Guidelines v1.0, SQL Authority.

